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Abstract
We introduce particular Poisson algebras designed to describe (after
quantization) generalized eigenvalue problems for two tridiagonal matrices.
These algebras are naturally implemented upon various elliptic curves.

PACS numbers: 02.20.Sv, 02.30.Gp, 03.65.Fd, 45.20.Jj

1. Introduction

Classical physics of conservative systems is described by the Hamilton dynamics where
symplectic manifolds M = {qi, pi}, i = 1, . . . , d, serve as phase spaces [1]. The fundamental
role is played by the Poisson bracket

{X, Y } =
d∑

i=1

(
∂X

∂qi

∂Y

∂pi

− ∂X

∂pi

∂Y

∂qi

)
(1.1)

defined for arbitrary dynamical variables X, Y given by analytical functions on M : X =
X(q, p), Y = Y (q, p). Variables Qi = Qi(q, p), Pi = Pi(q, p) satisfying

{Qi, Pj } = δij {Qi,Qj } = {Pi, Pj } = 0 (1.2)

are called canonical (e.g., the initial coordinates qi and momenta pi are canonical). Any
transformation (qi, pi) → (Qi, Pi) preserving algebraic relations (1.2) is called the canonical
transformation.

Poisson brackets {X, Y } satisfy a number of properties, which may be used for an
axiomatic definition of the Hamilton dynamics. Namely, they are (1) linear in their arguments,
{aX1 + bX2, Y } = a{X1, Y } + b{X2, Y }, a, b ∈ C, (2) antisymmetric {X, Y } = −{Y,X},
(3) obey the Leibnitz rule {X1X2, Y } = X1{X2, Y } + X2{X1, Y }, and, finally, (4) they satisfy
the Jacobi identity

{X, {Y,Z}} + {Y, {Z,X}} + {Z, {X, Y }} = 0.

0305-4470/04/4310429+15$30.00 © 2004 IOP Publishing Ltd Printed in the UK 10429
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We call a Poisson algebra any complete closed set of relations between abstract dynamical
variables X1, . . . , XN defined through abstract Poisson brackets satisfying the listed properties.

Quantization consists in the replacement of commuting variables X, Y by operators X̂, Ŷ

and of the Poisson brackets by commutators {X, Y } → [X̂, Ŷ ] ≡ X̂Ŷ − Ŷ X̂. For a pair
of canonical variables one sets [q̂, p̂] = 1 and the simplest (coordinate) realization of this
relation is q̂ = q, p̂ = −d/dq. For notational convenience, we assume that q, p ∈ C, which
allows us to remove the Planck constant h̄ and the imaginary unit i = √−1 from the standard
canonical commutation relation [q̂, p̂] = ih̄ by renormalization of q̂ or p̂.

Exponentials of the classical momentum, such as ep, become shift operators after the
quantization, ep̂f (q) = f (q−1). Suppose that a set of classical dynamical variables Xi(q, p)

satisfies a simple Poisson algebra. The quantization procedure is not obliged to preserve the
structure of this algebra, that is replacement of q, p by operators q̂, p̂ in Xi(q, p) (using some
particular ordering) and of Poisson brackets by commutators will not lead, in general, to simple
quantum algebras. In some cases algebraic structures are preserved without difficulties, see,
e.g., [20, 7]. However, as shown in [23], the ‘symmetry preserving quantization’ can require
a very intricate complication of the functions used for the definition of the quantum variables
X̂, Ŷ .

Starting from the pioneering work of Sklyanin [20] it was recognized that dynamical
algebras with nonlinear Poisson bracket relations and their quantum (operator) versions play a
crucial role in the description of important physical systems. The quadratic Sklyanin algebra
provided a concrete example of such ‘classical’ and ‘quantum’ algebras. It appeared naturally
in exactly solvable models of statistical physics and quantum field theory in the framework of
the R-matrix approach developed by Faddeev and his school in Leningrad.

In [29, 7], it was shown that another nonlinear algebra with three generators, called
the Askey–Wilson algebra, plays an important role in many physical systems with hidden
symmetries (e.g., the Coulomb and oscillator spectral problems in spaces with constant
curvature, the theory of Clebsch–Gordan and Racah coefficients, etc). The notion of Leonard
duality was introduced by Terwilliger [27] for the case of finite-dimensional matrices. In [28],
it was shown that the Askey–Wilson algebra characterizes such a duality for matrices. Recently,
in [31] it was shown that the Poisson version of this algebra describes classical systems
satisfying the Leonard duality.

The Leonard duality is closely connected with the property of bispectrality [4] for
orthogonal polynomials. If we suppose that a finite-dimensional system of orthogonal
polynomials Pn(x) satisfies simultaneously both a three-term recurrence relation with respect
to the degree of polynomials n and a difference equation with respect to the argument x on
some grid xs , then, as shown by Leonard [12], Pn(x) coincide with the q-Racah polynomials
discovered in [3] or their descendants. The q-Racah polynomials and their continuous measure
generalizations, called the Askey–Wilson polynomials, form the most general family of
‘classical’ special functions among orthogonal polynomials.

In this paper we consider an analogue of the Leonard duality for a more complicated
situation when the ordinary eigenvalue problem is replaced by the generalized eigenvalue
problem (GEVP). GEVP problems arise naturally in physics and mathematics, e.g., after a
separation of variables in partial differential equations [2]. In [30], it was shown that the
GEVP for two generic tri-diagonal matrices is equivalent to the theory of biorthogonal rational
functions Rn(x). In the terminology of [13], Askey–Wilson polynomials are orthogonal
on trigonometric (or, ‘q-quadratic‘) grids, which were believed for some time to be the
most general admissible grids (see, e.g., [15] for a discussion of biorthogonal rational
functions living on this grid). In [24–26] explicit examples of biorthogonal rational functions
were constructed which, being biorthogonal on elliptic grids, generalized previously known
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examples of Racah-type systems in a crucial way (their continuous measure analogues were
built in [22]). These elliptic biorthogonal rational functions are closely related to the ‘elliptic
6j-symbols’ discovered in the theory of elliptic solutions of the Yang–Baxter equation, see
the major clarifying work of Frenkel and Turaev [6] and references therein. They possess
an analogue of the Leonard duality: they satisfy both a three-term recurrence relation with
respect to n and a difference equation with respect to x on some elliptic grid xs . It should be
stressed that in this case we deal with GEVP rather than with ordinary eigenvalue problems.
So, it is reasonable to call this property the generalized Leonard duality (GLD).

It is therefore reasonable to study the most general class of functions obeying the GLD
property for two tridiagonal (Jacobi) matrices. In the quantum case (i.e., when we deal with
the operators) the problem is still open, being quite complicated. We restrict ourselves only
to its classical physics analogue. The main result of our paper consists in the description
of algebraic relations characterizing GLD in the Poisson algebra setting. We show that all
dynamical variables (the classical potentials and the grid) are expressed in terms of elliptic
functions which imitate the elliptic biorthogonal rational functions. A brief announcement of
this and some other results were given in [10].

The paper is organized as follows. In section 2 we recall basic results concerning classical
Leonard pairs (equivalently, the classical Leonard duality) obtained earlier in [31]. In section 3
we formulate the GLD for both quantum and classical cases. In section 4 we first consider a
more simple case of ‘symmetric’ dynamical variables. We derive a simple quadratic Poisson
relation which is necessary and suffiicent for GLD in this case. In section 5 we return to the
general case of the classical GLD and analyse algebraic relations for dynamical variables. In
section 6 we derive corresponding potentials and show that they are expressed in terms of
elliptic functions of second order in analogy with the functions of [24]. Finally, in section 7
we show that in the symmetric case the obtained algebraic relations for the classical GLD are
related to some generalized Sklyanin algebras.

2. Algebraic relations for classical Leonard pairs

Throughout the paper we work only with the classical mechanical systems of one degree
of freedom, d = 1. We suppose that X(q, p) and Y (q, p) are two independent dynamical
variables of canonical variables q and p, {q, p} = 1. As usual, functions X, Y are called
independent if in some domain of interest of the phase space (q, p) they satisfy the condition

∂(X, Y )

∂(q, p)
≡ ∂X

∂q

∂Y

∂p
− ∂X

∂p

∂Y

∂q
= {X, Y } �= 0 (2.1)

where ∂(X, Y )/∂(q, p) is the Jacobian of a change of variables.
According to the definition proposed in [11, 31], two independent variables X and Y are said

to form a classical Leonard pair (CLP) if there exist two different canonical transformations
(q, p) → (x, y) and (q, p) → (ξ, η) such that the first transformation brings X and Y to the
form

X = ϕ(x) Y = A1(x) ey + A2(x) e−y + A3(x) (2.2)

and in the second case we have the representation

X = B1(ξ) eη + B2(ξ) e−η + B3(ξ) Y = ψ(ξ) (2.3)

where (x, y) and (ξ, η) are canonical pairs (i.e., {x, y} = {ξ, η} = 1) and ϕ(x),Ai(x), ψ(ξ),

Bi(ξ) are some functions. Using canonical transformations y → κy, x → x/κ and taking
the limit κ → 0 one can obtain from (2.2) the limiting form Y = a1(x)y2 + a2(x)y + a3(x).
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Therefore, we shall assume that CLP admit such degenerate forms of Y in (2.2) (or of X in
(2.3)) without further reservations.

It is convenient to introduce the variable

Z = {X, Y }. (2.4)

We assume that there exists a region of values of X, Y where X and Y form indepedent
variables, that is Z �= 0. The latter means that in this domain we can invert the changes of
variables and find x = x(X, Y ), y = y(X, Y ). As a result, we can consider Z as a function
of X and Y,Z = Z(X, Y ). The condition that X and Y form a CLP allows us to establish the
explicit form of this function Z(X, Y ). As shown in [11] there exist nine arbitrary constants
αik, i, k = 0, 1, 2, such that

Z2 =
2∑

i,k=0

αikX
iY k ≡ −F(X, Y ). (2.5)

Vice versa, starting from condition (2.5) for arbitrary αik one can arrive at a CLP (including its
degenerate form mentioned above). The condition F = 0 determines the region of the phase
space with complex values of q, p where such a consideration breaks down.

From (2.5) it follows that the dynamical variables X, Y and Z = {X, Y } form a Poisson
algebra with the defining relations (2.4) and

{Z,X} = 1

2

∂F (X, Y )

∂Y
{Y,Z} = 1

2

∂F (X, Y )

∂X
(2.6)

which are known as the classical Askey–Wilson algebra relations [7]. This algebra generates
relation (2.5) with the interpretation of the constant α00 as a value of the corresponding Casimir
element [11]. In this way we obtain a particular example of the quadratic algebras, the most
popular representative of which is given by the Sklyanin algebra [20]. In a more general
setting, algebraic relations between dynamical variables involve polynomials of generators
(see, e.g., particular polynomial quantum algebras in [21] derived with the help of generalized
supersymmetry [18]).

Suppose that X is the Hamiltonian of some physical system. Then the first canonical
transformation (q, p) → (x, y) is, in fact, an action-angle transformation: it maps X into
a function depending on only one canonical variable x. Similarly, canonical transformation
(q, p) → (ξ, η) is an action-angle variables transformation for a system with the Hamiltonian
Y. Existence of a CLP can be considered as some duality property of two Hamiltonians with
respect to prescribed dependence on the momenta y and η of the ‘conjugated’ Hamiltonians
(i.e., Y and X, respectively). From this point of view, the CLP property is equivalent to the
notion of duality discussed in the theory of integrable systems, see, e.g., [19, 5].

We note that the quantum analogue of the CLP property coincides with the standard
Leonard duality [12] which results in the characterization of the q-Racah polynomials as the
most general self-dual orthogonal polynomials. As shown in [29], the quantum analogue of
the algebra (2.6) describes these polynomials via the representation theory (see also [27] for
similar algebraic treatments). Its relation to the standard slq(2) quantum algebra was described
in [8, 9].

3. Duality for a generalized eigenvalue problem

The main motivation of this paper consists in the following. In [24–26], we described a family
of discrete biorthogonal rational functions Rn(z) and Tn(z), n = 0, . . . , N − 1, satisfying the



Poisson algebras 10433

property

N−1∑
s=0

wsRn(zs)Tm(zs) = hnδnm (3.1)

with some weight function ws and normalization constants hn. The sequence zs is called the
‘grid’ and is expressed in terms of the Jacobi theta functions. Both Rn(zs) and Tn(zs) satisfy
three term recurrence relations in the variable n and second order difference equations in s.

Let us introduce a set of N vectors 	s = (R0(zs), R1(zs), . . . , RN−1(zs))
t , s =

0, . . . , N − 1. Then there exist two tridiagonal matrices L1, L2 such that

L1	s = zsL2	s (3.2)

where it is assumed that the matrices L1,2 act on the vector 	s in the standard manner. Similarly,
we introduce a set of N vectors 
n = (Rn(z0), Rn(z1), . . . , Rn(zN))t , n = 0, . . . , N −1. Then
there exist two tridiagonal matrices M1,M2 such that

M1
n = λnM2
n (3.3)

for some sequence of numbers λn (the dual ‘grid’). Since the functions Rn(zs) satisify
simultaneously two generalized eigenvalue problems (3.2) and (3.3), it is natural to consider
the following problem.

Let X and Y be two invertible N × N matrices with different eigenvalues λk and
µk, k = 0, . . . , N − 1. We denote as φk and ψk linearly independent eigenvectors of X
and Y, respectively

Xφk = λkφk Yψk = µkψk. (3.4)

Now we assume that in the basis of vectors ψk the matrix X takes the form

Xψk = X−1
2 X1ψk (3.5)

where X1, X2 are two tridiagonal matrices, that is

X1ψk = α
(1)
k+1ψk+1 + β

(1)
k ψk + γ

(1)
k ψk−1

X2ψk = α
(2)
k+1ψk+1 + β

(2)
k ψk + γ

(2)
k ψk−1.

(3.6)

In the same way, we assume that there exist two tridiagonal matrices Y1, Y2 such that

Yφk = Y−1
2 Y1φk (3.7)

with the properties

Y1φk = ξ
(1)
k+1φk+1 + η

(1)
k φk + ζ

(1)
k φk−1

Y2φk = ξ
(2)
k+1φk+1 + η

(2)
k φk + ζ

(2)
k φk−1.

(3.8)

It is interesting to classify all matrices X and Y admitting such a GLD property. This problem
implies an explicit description of algebraic structures behind such a construction that generalize
the Askey–Wilson algebra. We conjecture that a complete solution of this problem yields
discrete biorthogonal rational functions of [24–26]. Here we consider a Poisson algebra
analogue of this problem.

We take two independent functions X(q, p) and Y (q, p) of canonical variables q, p and
suppose that there exist canonical transformations (q, p) → (x, y) and (q, p) → (ξ, η) such
that the first transformation leads to

X = ϕ(x) Y = Y1(x, y)

Y2(x, y)
(3.9)
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and in the second case we have

Y = ψ(ξ) X = X1(ξ, η)

X2(ξ, η)
(3.10)

where Xr, Yr , r = 1, 2, are some classical ‘tridiagonal functions’, that is

Xr(ξ, η) = A
(r)
1 (ξ) eη + A

(r)
2 (ξ) e−η + A

(r)
0 (ξ)

Yr(x, y) = B
(r)
1 (x) ey + B

(r)
2 (x) e−y + B

(r)
0 (x).

(3.11)

We call the pair (X, Y ) satisfying such a property the generalized CLP.

4. Symmetric Jacobi matrices case

If we suppose that A
(r)
0 (x) = B

(r)
0 (x) = 0, which corresponds to the classical mechanical

analogues of the symmetric (‘two-diagonal’) Jacobi matrices, then the problem is easily
solvable.

Let us introduce a new variable Z = {X, Y }. In the representation (3.9), we can rewrite Y as

Y = e0(x) +
e1(x)

e2y − g(x)
(4.1)

where e0(x), e1(x), g(x) are some functions. The choice g(x) = 0 leads to a subcase of the
standard CLP, therefore we assume that g(x) �= 0. Straightforward computations yield

Z = −2ϕ′(x)
e1(x) e2y

(e2y − g(x))2

= −2ϕ′(x)(Y − e0(x))

(
1 +

g(x)(Y − e0(x))

e1(x)

)
.

On the one hand, we thus obtain

Z = u2(X)Y 2 + u1(X)Y + u0(X) (4.2)

for some functions ui(X), i = 1, 2, 3. On the other hand, analogous consideration of (3.10)
yields

Z = v2(Y )X2 + v1(Y )X + v0(Y ) (4.3)

for some other functions vi(Y ). Comparing (4.2) and (4.3), we immediately arrive at the
general expression for Z in terms of X, Y

Z =
2∑

i,k=0

αikX
iY k (4.4)

for some coefficients αik .

Theorem 1. Dynamical variables X and Y form a generalized symmetric CLP, that is they
admit representations (3.9) and (3.10) with A

(r)
0 = B

(r)
0 = 0, r = 1, 2, if and only if their

Poisson bracket Z = {X, Y } takes the form (4.4) with nine arbitrary coefficients αik .

Proof. The ‘only if’ part of this statement has been proved already. It remains to show
that expression (4.4) for arbitrary αik results in (3.9) and (3.10) after some canonical
transformations.

Let us choose a representation X = q, Y = F(q, p) with some unknown function
F(q, p). Then, we obtain the following simple differential equation for F(q, p):

Z = ∂F (q, p)

∂p
=

2∑
i,k=0

αikq
iF k(q, p)
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which has a general solution of the form

F(q, p) = A
(1)
1 (q) eω(q)(p−p0(q)) + A

(1)
2 (q) e−ω(q)(p−p0(q))

A
(2)
1 (q) eω(q)(p−p0(q)) + A

(2)
2 (q) e−ω(q)(p−p0(q))

for some known functions A
(i)
1 (q), ω(q) and an arbitrary function p0(q). We perform now a

change of variables: x = x(q) and y = ω(q)(p − p0(q)), where x ′(q)ω(q) = 1. As a result,
replacing in X and Y q-dependence by x-dependence via inversion of the function x = x(q),
we obtain the desired expressions (3.9) with A

(r)
0 = 0.

Evidently, the same procedure applies to derivation of the general admissible form of X
and Y in the representation (3.10). �

Now we fix the coefficients αik and find explicit forms of the functions ϕ(x), e0(x), e1(x)

and g(x). First of all, we note that the simple canonical transformation x → x, y → y + f (x)

with an appropriate function f (x) allows us to reduce g(x) to a non-zero constant, which we
set equal to 1. Then, from the equation

2∑
i,k=0

αikX
iY k + 2ϕ′(x)e1(x)

e2y

(e2y − 1)2
= 0

we obtain three relations

2ϕ′(x) = −e1(x)π2(ϕ) 2(2e0(x) − e1(x))ϕ′(x) = π1(ϕ)e1(x)

2e0(x)(e1(x) − e0(x))ϕ′(x) = π0(ϕ)e1(x)

where πi(ϕ) = α2iϕ
2 + α1iϕ + α0i , i = 0, 1, 2, are three quadratic polynomials in ϕ. As a

result, we find

(ϕ′(x))2 = 1
4D(ϕ) (4.5)

where

D(ϕ) = π2
1 (ϕ) − 4π2(ϕ)π0(ϕ) =

4∑
i=0

diϕ
i

is a generic polynomial in ϕ(x) of degree 4, that is the coefficients di are not constrained. The
general solution of the differential equation (4.5) can be written in the form

ϕ(x) = γ
θ1(βx + u1)θ1(βx + u2)

θ1(βx + v1)θ1(βx + v2)
(4.6)

where θ1(u) is the Jacobi theta function

θ1(u) = 2
∞∑

n=0

(−1)n eπ iτ(n+1/2)2
sin π(2n + 1)u (4.7)

and the only constraints upon the parameters γ, β, u1,2, v1,2, τ are

u1 + u2 = v1 + v2 Im(τ ) > 0.

The first of these conditions guarantees that the meromorphic function ϕ(x) is doubly periodic
(i.e., it is an elliptic function). There are in total six free parameters in (4.6). Equation (4.5)
contains five parameters di , and the sixth parameter, the integration constant x0, enters solutions
via the shift x → x + x0. By a linear fractional transformation y = (aϕ + b)/(cϕ + d),
equation (4.5) can be reduced to the form (y ′)2 = 4y3 − g2y − g3, which is solved in terms of
the Weierstrass function P(x). Therefore ϕ(x) is given by a linear fractional transformation
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of P(x) or by the general elliptic function of second order (4.6). In [24, 25], function (4.6)
described the zeros of a family of discrete self-dual biorthogonal rational functions.

For e1(x) and e0(x), we derive expressions

e1(x) = − 2ϕ′

π2(ϕ)
e0(x) = −π1(ϕ) + 2ϕ′

2π2(ϕ)
. (4.8)

As a simple explicit example, we consider the case π1 = 0 or αi1 = 0, i = 0, 1, 2, and
π2 = ϕ2 − 1, π0 = 1 − k2ϕ2, 0 < k < 1. From (4.5), we then find

(ϕ′(x))2 = (1 − ϕ2)(1 − k2ϕ2).

The solution of this equation is given by the Jacobi elliptic sine function with modulus
k, ϕ(x) = sn(x − x0), where x0 is an arbitrary constant. Other functions of interest are

e0(x) = 1

2
e1(x) = dn(x − x0)

cn(x − x0)
.

Making the shift x → x + x0, we can write

X = sn(x) Y = dn(x)

cn(x)

(
1 +

2

e2y − 1

)
= dn(x)

cn(x)
coth y.

The dual representation X = ẽ0(ξ)+ ẽ1(x)/(e2η −1), Y = ψ(ξ) corresponds to the transposed
matrix α̃ik = αki . In the taken special case, we have

ψ(ξ) = 1

sn(ξ)
ẽ0(ξ) = 1

2
ẽ1(ξ) = cn(ξ)

dn(ξ)

and, hence,

X = cn(ξ)

dn(ξ)
coth η Y = 1

sn(ξ)
.

We see that the shapes of variables X and Y in the initial and dual pictures almost coincide.
Consider now the degenerate case, when D(ϕ) → 0. In order to have some y-dependence

in Y we scale the canonical variables x → x/κ, y → κy and take the limit κ → 0. Since, e2κy−
1 → 2κy we assume that κ−1e1(x/κ) is finite in this limit. As a result, we come to the ansatz

X = ϕ(x) Y = e0(x) +
e1(x)

y + g(x)

that is Y becomes a rational function of y. Using the shift y → y − g(x) and a change of
variable x, Y can be reduced to a simpler form Y = e0(x) + y−1.

In this case, Z = −ϕ′(x)/y2 = −ϕ′(x)(Y − e0(x))2, that is the quadratic polynomial
Z = π2(X)Y 2 + π1(X)Y + π0(X) has a double zero as a function of Y. This corresponds
precisely to the condition D(X) = π2

1 (X) − 4π2(X)π0(X) = 0. Obviously, this can happen
only if both π0(X) and π2(X) are complete squares or π2(X) = γπ0(X) for some constant γ .
We also have

ϕ′(x) = −π2(ϕ) e0(x) = − π1(ϕ)

2π2(ϕ)
(4.9)

that is the ‘grid’ ϕ(x) and the ‘potential’ e0(x) are expressed in terms of elementary functions.
Other types of simplified situations are described by the choices

X = ϕ(x) Y = ey + g(x)

1 + b(x) e−y
(4.10)

corresponding to Laurent biorthogonal polynomials, and its generalization

X = ϕ(x) Y = ey + g(x) + f (x) e−y

1 + b(x) e−y
. (4.11)

We skip these intermediate situations and pass directly to the general case.
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5. The general case

Suppose that none of the coefficients A
(r)
i , B

(r)
i in (3.11) vanishes identically. In this case the

variables X and Y can be represented in the form

X = ϕ(x) Y = e0(x) +
e1(x)

ey − g1(x)
+

e2(x)

ey − g2(x)
(5.1)

and in the dual picture

Y = ψ(ξ) Y = t0(ξ) +
t1(ξ)

eη − r1(ξ)
+

t2(ξ)

eη − r2(x)
. (5.2)

By means of the canonical transformations y → y + f (x) we can normalize g1(x) = 1 or
g2(x) = 1, but we keep g1,2 arbitrary for symmetry reasons. The limit g1 → g2 is degenerate
since in this case Y (x, y) can have a double pole in ey .

Theorem 2. Suppose that independent variables X and Y admit representations (5.1) and
(5.2) via two canonical transformations and denote Z ≡ {X, Y }. Then X, Y,Z necessarily
satisfy quadratic equations determining particular elliptic curves

Z2 + F1(X, Y )Z + F2(X, Y ) = 0 Z2 + G1(X, Y )Z + G2(X, Y ) = 0 (5.3)

where F1 and G1 are polynomials of the second degree in Y and X, respectively, and

F2(X, Y ) = 1
4F1(F1 − q2) G2(X, Y ) = 1

4G1(G1 − r2) (5.4)

where q = q(X, Y ) and r = r(X, Y ) are polynomials in Y and X of the first degree, respectively.

Proof. First we compute Z = {X, Y } in the representation (5.1)

Z = −ϕ′(x) ey

(
e1(x)

(ey − g1(x))2
+

e2(x)

(ey − g2(x))2

)
. (5.5)

Excluding ey from Z and Y using the resultant technique, we obtain the first elliptic curve
equation in (5.3) with

F1(X, Y ) = ϕ′(x)(e1g2 + e2g1)

e1e2(g2 − g1)2
((g2 − g1)

2(Y − e0)
2

+ 2(g2 − g1)(e2 − e1)(Y − e0) + (e1 + e2)
2) (5.6)

and

F2(X, Y ) = ϕ′(x)(Y − e0)(g1g2(Y − e0) + e1g2 + e2g1)

e1g2 + e2g1
F1(X, Y ). (5.7)

As usual, it is assumed that the function ϕ(x) is invertible, and we can substitute x = x(X) in
the right-hand sides of (5.6) and (5.7).

Evidently, F1(X, Y ) is a quadratic polynomial in Y, whereas F2(X, Y ) is a special quartic
polynomial in Y equal to the product of F1 and of another quadratic polynomial in Y. Calculating
the discriminant D(X, Y ) of the quadratic equation in Z (5.3), we obtain

D(X, Y ) ≡ F 2
1 − 4F2 = q2(X, Y )F1(X, Y ) (5.8)

where q(X, Y ) is a linear function of Y of the following form:

q(X, Y ) =
(

ϕ′(x)

e1e2(e1g2 + e2g1)

)1/2 (
(e2g1 − e1g2)(Y − e0) +

e1 + e2

g2 − g1
(e2g1 + e1g2)

)
.

(5.9)
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Thus D(X, Y ) has a double zero in Y. Using (5.8), we can rewrite F2 in the required form
(5.4) with F1(X, Y ) given by (5.6) and q(X, Y ) fixed in (5.9).

Now we can repeat the above considerations in the dual representation (5.2). From the
permutational symmetry it follows that G1(X, Y ) is now a quadratic polynomial in X and
r(X, Y ) is a linear function in X. The theorem is proved. �

In order to find explicit forms of functions F1,G1, q, and r it is necessary to solve the
resultant equation, obtained after exclusion of Z from equations (5.3),

(G2 − F2)
2 = (F1 − G1)(G1F2 − G2F1).

We do not know all its solutions and limit consideration to the obvious case F1 = G1 and
F2 = G2 (i.e., q = r). This leads to a quite general situation when F1(X, Y ) and q(X, Y ) are
polynomial in both X and Y

F1(X, Y ) =
2∑

i,k=0

αikX
iY k q(X, Y ) =

1∑
i,k=0

βikX
iY k (5.10)

for some 13 constants αik and βik . It is not clear whether all the latter constants are independent
or if they must satisfy some additional constraints. Let us prove that in general there are no
constraints upon them.

Theorem 3. Suppose that two independent variables X, Y satisfy the condition (5.3), where
Z = {X, Y } and F1(X, Y ), F2(X, Y ) are given by (5.10), (5.4) for arbitrary constants αik, βik .
Then there exist two canonical transformations (q, p) → (x, y) and (q, p) → (ξ, η) yielding
representation (5.1) and its dual (5.2), respectively.

Proof. We choose a pair of new canonical variables (x, y) in such a way that X coincides with
x: X = x, Y = f (x, y), so that Z = {X, Y } = fy(x, y). From relation (5.3), we obtain a
nonlinear differential equation for f (x, y)

f 2
y (x, y) + F1fy(x, y) + 1

4F1(F1 − q2) = 0 (5.11)

where
F1(x, f ) = π2(x)f 2 + π1(x)f + π0(x)

πi(x) = α2ix
2 + α1ix + α0i i = 0, 1, 2

(5.12)

and

q(x, f ) = τ1(x)f + τ0(x) τi(x) = β1ix + β0i i = 0, 1. (5.13)

We denote D ≡ π2
1 − 4π0π2 and substitute into equation (5.11) the ansatz

f (x, y) =
√

D(x)

4π2(x)
(u(x, y) + u−1(x, y)) − π1(x)

2π2(x)
(5.14)

where u(x, y) is an unknown function. After dropping the common factor D(1−u−2)2/16π2
2 ,

we obtain

u2
y +

1

4

√
D(u2 − 1)uy +

D

64π2
(u2 − 1)2 − 1

4
π2u

2q2 = 0.

Resolving this quadratic equation with respect to uy , we arrive at

uy(x, y) = 1
8

√
D(1 − u2) ± 1

2

√
π2uq.

Since the function uq(x, f ) is a quadratic polynomial in u, we can rewrite this equality as

uy(x, y) = κ2(x)u2(x, y) + κ1(x)u(x, y) + κ0(x) (5.15)

for some functions κi(x), i = 0, 1, 2.
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The general solution of linear ordinary differential equation (5.15) is

u(x, y) = ε1(x) tanh
(

1
2ω(x)(y − y0(x))

)
+ ε0(x)

where y0(x) is an arbitrary function of x and

ε0 = − κ1

2κ2
ω = −

√
κ2

1 − 4κ2κ0 ε1 = − ω

2κ2
.

Returning to the original variable Y = f (x, y), we can represent the derived solution (5.14)
in the form

f (x, y) = V1(x) eω(x)(y−y0) + V2(x) e−ω(x)(y−y0) + V0(x)

W1(x) eω(x)(y−y0) + W2(x) e−ω(x)(y−y0) + W0(x)

for some functions Vi(x),Wi(x), i = 0, 1, 2. Performing a simple canonical transformation
ω(x)(y − y0) → y and x → ϕ(x), such that ω(x)ϕ′(x) = 1, we come to the needed
representation (5.1). The theorem is proved. �

6. Derivation of the potentials

Now it is necessary to find explicit expressions for the grid function ϕ(x) and potentials
e0,1,2(x), g1,2(x). Relations (5.6) and (5.7) are central for this purpose. Let us return to the
first equation in (5.3), where X, Y are fixed in (5.1) and polynomials F1, F2 have the form

F1(X, Y ) =
2∑

i,k=0

αikX
iY k = π2(X)Y 2 + π1(X)Y + π0(X)

F2(X, Y ) = 1

4
F1(F1 − q2) q =

1∑
i,k=0

βikX
iY k = τ1(X)Y + τ0(X).

Introduce special notation for the ratio F2/F1 of these expressions
1
4 (F1 − q2) ≡ ρ2(X)Y 2 + ρ1(X)Y + ρ0(X) (6.1)

where

4ρ2 = π2 − τ 2
1 4ρ1 = π1 − 2τ1τ0 4ρ0 = π0 − τ 2

0 . (6.2)

Equating F1 as given above with (5.6), we obtain

ϕ′ = π2
e1e2

e1g2 + e2g1
(6.3)

e2 − e1

g2 − g1
= e0 +

π1

2π2
(6.4)

(e1 + e2)
2

(g2 − g1)2
= π0 + e0π1 + e2

0π2

π2
. (6.5)

Similarly, equating (6.1) with the ratio F2/F1 appearing from (5.7), we derive

ϕ′ = ρ2

(
e1

g1
+

e2

g2

)
(6.6)

e1

g1
+

e2

g2
= 2e0 +

ρ1

ρ2
(6.7)

e0

(
e0 − e1

g1
− e2

g2

)
= ρ0

ρ2
. (6.8)



10440 V P Spiridonov and A S Zhedanov

The latter set of equations yields

(ϕ′(x))2 = ρ2
1(ϕ) − 4ρ0(ϕ)ρ2(ϕ) (6.9)

e0(x) = ϕ′(x) − ρ1(ϕ)

2ρ2(ϕ)

e1(x)

g1(x)
+

e2(x)

g2(x)
= ϕ′(x)

ρ2(ϕ)
. (6.10)

On the right-hand side of (6.9) we have a fourth degree polynomial of ϕ. Therefore, the
following general statement is valid.

Proposition 4. The ‘grid’ function ϕ(x) is an elliptic function satisfying differential
equation (6.9). It is equal to the ratio of four Jacobi theta functions as described in (4.6).

The potential e0(x) is given by a simple combination of ϕ′(x) and ϕ(x) (i.e., it is also an
elliptic function). Combining (6.3) with (6.6), we obtain

e1e2

g1g2
= (ϕ′)2

π2ρ2
.

This relation and the second equation in (6.10) yield

e1,2 = g1,2
ϕ′

2ρ2

(
1 ± τ1√

π2

)
. (6.11)

Substitution of the derived expressions for e0,1,2 into equation (6.4) results in

g2 + g1

g2 − g1
= π1τ1 − 2π2τ0

4ϕ′√π2
(6.12)

from where one determines the ratio g1/g2. As seen, the potentials e1,2 and g1,2 involve
the square root of the polynomial π2(ϕ). Therefore, unless π2 is a complete square, these
potentials are not given by elliptic functions (they are double periodic but not meromorphic
functions of x). However, in the non-factorized expression

Y = e0 ey + (e0g1g2 − e1g2 − e2g1) e−y + e1 + e2 − (g1 + g2)e0

ey + g1g2 e−y − g1 − g2
(6.13)

we have only particular combinations of ei and gi . Using the gauge freedom y → y + f (x),
we can fix g1 = g2 +

√
π2χ(ϕ), where χ(ϕ) is a polynomial or rational function of ϕ(x). As

a result, all potentials in (6.13) become elliptic functions.
Since all entering quantities were determined already, equation (6.5) must be an identity.

This is easily verified with the help of (6.9) and (6.10). There is another way of fixing
potentials. We could start by equating q(X, Y ), as fixed in (5.9), with τ1Y + τ0. This brings
in only five equations, making it evident that one of the equations (6.3)–(6.5) must be an
identity. However, technically speaking, this way of derivation appears to be essentially more
complicated than the present one.

7. A generalization of Sklyanin’s Poisson algebra

We have shown that when F1 = G1 and F2 = G2 conditions (5.3) are necessary and sufficient
for dynamical variables X and Y to satisfy a classical analogue of the generalized eigenvalue
problem for two tridiagonal matrices. The corresponding Poisson algebra takes the form

{X, Y } = Z {Z,X} = −Z
∂Z

∂Y
{Y,Z} = −Z

∂Z

∂X
. (7.1)

However, the variable Z considered as a function of X, Y is given by a root of a quadratic
equation. The algebra obtained after the substitution Z = (−F1 ± q

√
F1)/2 into (7.1) has a
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much less attractive form with respect to the Askey–Wilson case (2.6). Therefore, we need to
find some ‘aesthetic simplification’ procedure. For instance, we may try to express X, Y,Z

in terms of some other dynamical variables Ui, i = 1, 2, . . . , so that the algebra (7.1) is
reproduced by relatively simple Poisson algebraic relations between generators Ui .

This idea can be explained as follows. From the very beginning we have demanded that
in the picture (5.1) the variable Y is presented as the ratio Y = U3/U4 where both U3 and
U4 are ‘tridiagonal’ in y. Similarly, in the dual picture (5.2) one should be able to represent
X = U1/U2, where U1, U2 have the same tridiagonality property with respect to η. It is
therefore natural to set

X = U1(q, p)

U2(q, p)
Y = U3(q, p)

U4(q, p)

and seek four dynamical variables U1, U2, U3, U4 such that for some canonical transformation
(q, p) → (x, y) all Ui are reduced to the tridiagonal form and, additionally, U1 = ϕ(x)U2

for some function ϕ(x). Similarly, there should exist a dual canonical transformation
(q, p) → (ξ, η) which reduces again all Ui to tridiagonal form and, additionally, guarantees
that U3 = ψ(ξ)U4 for some function ψ(ξ). All these requirements bring nothing new to the
picture we have considered so far. The crucial additional requirements look as follows:

(i) pairwise Poisson brackets of {Ui,Uj } should be quadratic polynomials in Ui ;
(ii) the linear transformations Ũ 1 = m11U1 + m12U2, Ũ 2 = m21U1 + m22U2 and Ũ 3 =

�11U3 + �12U4, Ũ 4 = �21U3 + �22U4 with two arbitrary nonsingular matrices �ij ,mij do
not change the form of the Poisson algebra for Ui (i.e., it should be covariant with respect
to such linear transformations).

Condition (ii) can be explained as follows. The permutation U1 ↔ U2 is equivalent to
the transformation X̃ = 1/X, Ỹ = Y . This leads to Z̃ = −Z/X2 and it can be verified
that if X, Y,Z satisfy condition (5.3) (with F2 = F1(F1 − q2)/4) then the new variables
X̃, Ỹ , Z̃ satisfy a similar equation with changed functions F̃ 1, F̃ 2 satisfying the constraint
F̃ 2 = F̃ 1(F̃ 1 − q̃2)/4. Thus, if a pair (X, Y ) satisfies the GLD property then the same
is true for the pairs (1/X, Y ), (X, 1/Y ), (1/X, 1/Y ). As a result, general linear fractional
transformations

X̃ = aX + b

cX + d
Ỹ = AY + B

CY + D
do not change the form of the elliptic curve equations (5.3).

Some generalizations of the Sklyanin algebra were discussed in [14]. They are
generated by two polynomials Q1(U) and Q2(U) depending on four dynamical variables
Ui, i = 1, . . . , 4, whose Poisson brackets are defined in the following nice way:

{Ui,Uj } = (−1)i+j det

(
∂Qk

∂Ul

)
l �= i, j, i > j. (7.2)

The functions Q1,Q2 serve as Casimir elements of this algebraic relations, that is {Ui,Qk} =
0, k = 1, 2.

In order to get a quadratic Poisson algebra it is necessary to fix Q1(U) and Q2(U) as
quadratic polynomials. For example, the standard Sklyanin’s Poisson algebra is obtained from

Q1(U) = U 2
1 + U 2

2 + U 2
3 Q2(U) = U 2

4 + J1U
2
1 + J2U

2
2 + J3U

2
3 .

This construction can be used to model our classical Poisson algebraic relations (5.3). We
consider only the case of two-diagonal representation (4.4). Calculating the Poisson bracket
of X = U1/U2, Y = U3/U4, we obtain

Z = {X, Y } = {U1, U3}
U2U4

+
U1U3{U2, U4}

U 2
2 U 2

4

− U3{U1, U4}
U2U

2
4

− U1{U2, U3}
U 2

2 U4
. (7.3)
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It is seen that in order to obtain (4.4) it is necessary to demand that each Poisson bracket
{Ui,Uj } in (7.3) contains UiUj for the same i and j , the adjacent pair UkUl (where k or l are
not equal to i or j ) and two adjacent pairs UiUk and UlUj . These conditions can be satisfied
if we choose Casimir elements in the form

Q1(U) =
4∑

i=1

aiU
2
i + ξ1U1U2 + η1U3U4

Q2(U) =
4∑

i=1

biU
2
i + ξ2U1U2 + η2U3U4

(7.4)

with arbitrary parameters ai, bi, ξm, ηm. Direct calculations show that
1
4Z = (a3b1 − a1b3)X

2Y 2 + (a3ξ2 − b3ξ1)XY 2 + (b1η1 − a1η2)X
2Y

+ (η1ξ2 − η2ξ1)XY + (a3b2 − b3a2)Y
2 + (a4b1 − a1b4)X

2

+ (b2η1 − a2η2)Y + (a4ξ2 − b4ξ1)X + a4b2 − a2b4.

We note that property (ii) is fulfilled (e.g., the permutation U1 ↔ U2 leads only to the
permutation of parameters a1, a2 and b1, b2 in Q1 and Q2).

Theorem 5. Any symmetric generalized CLP with X = U1/U2 and Y = U3/U4 can be
realized in terms of the quadratic Poisson algebra (7.2) with two Casimir elements given
by (7.4).

In a different context, the relevance of the Sklyanin algebra for discrete elliptic
biorthogonal functions has been noted recently by Rains [16] and Rosengren [17].

The general non-symmetric systems obeying the generalized classical Leonard duality
are essentially more complicated and require a separate consideration.
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